Article Text

Download PDFPDF

Review
Necessity to evaluate PI3K/Akt signalling pathway in proarrhythmia
  1. Martin Ezeani1 and
  2. Sunday Elom2
  1. 1 Department of Chemical Pathology, Faculty of Health Science and Technology, College of Health Science, Ebonyi State University, Abakaliki, Ebonyi State, Nigeria
  2. 2 Department of Medical Biochemistry, Federal University Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
  1. Correspondence to Dr Martin Ezeani; mr940258{at}dal.ca

Abstract

The incidence of QT prolongation and torsades de pointes is on the rise due to the use of cardiovascular and non-cardiovascular drugs. Robust efforts have been made and are still ongoing to understand the underlying mechanisms that can enhance or prevent the development of drug-induced proarrhythmia. A caveat in the use of antiarrhythmic drugs is the ability to obtain safe action potential prolongation therapeutic effects, through IKr blockade. This remains as yet completely unachievable, as blockers of the potassium channel have not provided complete safe measures. Because of this, efforts at understanding the mechanisms of proarrhythmia have continued. PI3K/Akt signalling pathway appears to possess some potential advantage in this regard because cardiomyocytes intracellular dialysis with phosphatidylinositol (3,4,5)-trisphosphate (PIP3) normalises ion channel alterations and eliminates proarrhythmic features. However, there is a conundrum. Increased activities of PIP3 signalling can enhance cell proliferation and survival, and reduced activities of PIP3 signalling can lead to proarrhythmia. PI3K inhibitors used in cancer treatment have been found to cause proarrhythmia, and represent a potential avenue for the research and evaluation of potential effectiveness of a battery of antiarrhythmic and cancer drugs that are either currently in use or in development. Despite this knowledge, limited information is available on PI3K/Akt signalling and arrhythmogenesis. This highlights the need to search for new ways to improve testing of antiarrhythmic drugs and increase our understanding in PI3K/Akt signalling and arrhythmogenesis.

  • arrhythmias
  • ventricular fibrillation
  • cardiac remodelling

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Footnotes

  • Contributors ME wrote the MS; SE organised and edited.

  • Competing interests None declared.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Data sharing statement Additional data and information can be obtained by contacting the corresponding author.