Article Text

Download PDFPDF

Bioresorbable vascular scaffold: promises and the fallen child-as-king?
  1. Stephane Cook1 and
  2. Pascal Meier2,3
  1. 1Department of Cardiology, Hospital & University Fribourg, Fribourg, Switzerland
  2. 2Department of Cardiology, University Hospital Geneva, Geneva, Switzerland
  3. 3Institute of Cardiovascular Science, University College London UCL, London, UK
  1. Correspondence to Stéphane Cook; stephane.cook{at}unifr.ch

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

The bioresorbable vascular scaffolds ‘BVS’

The main limitation of percutaneous coronary intervention compared to open-heart surgery is the insertion of a foreign body (usually a stent) inside the coronary artery. This is associated with foreign body inflammation that triggers restenosis, neoatherosclerosis and late-occurring stent thrombosis. As such, BVS were considered as a possible solution as early as the late 60s by Dotter with preclinical work,1 and then with the first human study by Higaki and Tamai2 in the late 90s. In these two preliminary experiments, device materials had weak radial strength and came with the risk of scaffold thrombosis (ScT). In addition, long-term preliminary studies of the Higaki-Tamai stent showed pathological remodelling of the artery during the first 3 years. Based on these studies, this early concept was soon abandoned. In 2004 following concerns of late drug-eluting stent (DES) thrombosis and its association with hypersensitivity reaction to permanent polymer, we saw a renewed interest in bioresorbable polymers. First, durable polymers on metallic DES were progressively swapped for lower dose, bioresorbable polymers. Second, a modified version of BVS that combines a novel stent design, a semicrystalline poly L-lactic acid (PLLA) backbone and a coating with everolimus was considered. This seminal work resulted in the first drug-eluting BVS, and subsequently in its first human implantation.

BVS and its promises

The announcement of the first clinical BVS implantation by Ormiston3 generated optimism during the great DES depression of 2006: BVS could potentially eradicate long-term adverse events (restenosis, late stent thrombosis and the newly described neoatherosclerosis) but could also result in possible coronary restoration with physiological vasomotion. Early studies with intravascular imaging were encouraging: early healing (capping) and the foundation of a new …

View Full Text

Linked Articles