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CliniCal impaCt of aspirin resistanCe
The failure of daily aspirin therapy to achieve 
an adequate or ‘normal’ suppression of 
platelet aggregation, as assessed ex vivo, is 
known as ‘aspirin resistance’.1 2 A substantial 
fraction of patients classified as aspirin-resis-
tant are in fact poorly compliant.3 In other 
cases, an increase in platelet turnover, often 
seen in association with systemic inflamma-
tion, as found in smokers and patients with 
diabetes, may render a once-daily administra-
tion schedule inadequate.2 4–6 (Administering 
aspirin twice daily can result in greater 
platelet inhibition but may increase the risk 
for gastrointestinal bleeding.) When adverse 
pharmacokinetic factors impede the delivery 
of aspirin to platelets, an increase in dose 
can be helpful.7 8 Concurrent administra-
tion of ibuprofen or other cyclooxygenase-1 
(COX-1) inhibitors may prevent aspirin 
from acetylating the active site of COX-1.9 
But in some patients, even when platelet 
cyclooxygenase is fully inhibited, platelet 
aggregation remains anomalously high; this 
might be described as inherent aspirin resis-
tance. Inherent aspirin resistance presumably 
reflects genetic or metabolic factors that alter 
the expression or function of platelet proteins 
such that platelets can aggregate effectively in 
the absence of thromboxane.

Although low-dose daily aspirin regimens 
reduce the risk for cardiovascular events by 
about 25% in patients with cardiovascular 
disease,10 meta-analyses found that subjects 
who were resistant to ongoing aspirin 
therapy, as opposed to those who were sensi-
tive, are about three times more likely to 
experience cardiovascular events.11 12 This 
greatly increased risk is disproportionate 
to the benefit achievable with aspirin treat-
ment, and evidently reflects the fact that 
aspirin resistance is serving as a marker for 

metabolic factors, which themselves greatly 
increase cardiovascular risk. Nonetheless, 
there is strong evidence that intensified plate-
let-stabilising therapy can markedly improve 
outcomes in patients diagnosed with aspirin 
resistance. A number of controlled trials 
have defined groups of patients who are 
resistant to aspirin-clopidogrel therapy, and 
have randomised them to either continue 
with this standard care or to receive tailored 
platelet-stabilising regimens intended to 
achieve better control of platelet aggregation 
(entailing dosage increases or addition of 
additional agents such as integrin alpha-IIb 
beta-3 antagonists). A recent meta-analysis 
of such trials found that risk for subsequent 
death or stent occlusion was only one-quarter 
as great in patients receiving tailored therapy 
(OR=0.25, 95% CI 0.13 to 0.49), and risk for 
total vascular events was only 40% as high 
(OR=0.40, 95% CI 0.20 to 0.77).13 Hence, 
additional or intensified measures for stabi-
lising platelets appear to have important 
life-saving efficacy in aspirin-resistant patients.

The possibility of employing safe nutra-
ceutical measures for this purpose should be 
considered. Agents that may have potential in 
this regard include the following:

spirulina/phycocyanin: targeting naDpH oxidase
The Nox2-dependent form of NAPDH 
oxidase is markedly activated when plate-
lets interact with collagen via their chief 
collagen receptor, glycoprotein VI (GPVI). 
This event is the initial stimulus to thrombus 
formation when arterial plaque bursts and 
platelets are thereby exposed to collagen in 
the subendothelial ground substance. Inter-
action of collagen with GPVI leads to a series 
of intracellular tyrosine phosphorylation 
reactions, catalysed by an Src-like kinase and 
Syk, that induce formation of a signalling 
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complex centred around the protein ‘linker for activated 
T cells’ (LAT).14 This complex confers an activating 
phosphorylation on phospholipase C-gamma, which, 
by generating diacylglycerol and inosine-1,4,5-trisphos-
phate, induces a spike in intracellular free calcium as 
well as activation of protein kinase C (PKC), key triggers 
for platelet aggregation.15 The concurrent activation 
of nicotinamide adenine dinucleotide phosphate-oxi-
dase(NADPH oxidase)—likely downstream from PKC 
activation—serves to potentiate this signalling pathway 
by generating hydrogen peroxide in the microenviron-
ment of the GPVI-LAT signalling complex; this hydrogen 
peroxide oxidises active site cysteine groups in the tyrosine 
phosphatase SHP-2 (Src homology 2 domain-containing 
protein tyrosine phosphatase), reversibly inhibiting it, 
and thereby prolonging the half-lives of the tyrosine phos-
phorylations which SHP-2 targets.16–18 Studies show that 
agents that inhibit Nox2 activity decrease the aggregatory 
response of platelets to collagen exposure; moreover, 
platelets that are genetically deficient in Nox2 are less 
responsive to collagen.19–21 Conversely, platelets deficient 
in peroxiredoxin II or glutathione peroxidase activity 
are hyper-responsive to collagen.16 22 In C57BL/6J mice, 
susceptibility to induced carotid or venous thrombosis 
increases during ageing, a phenomenon associated with 
increased expression of NADPH oxidase components. 
When these mice are bioengineered to overexpress gluta-
thione peroxidase, this age-related increase in thrombotic 
activity is abolished; treatment with the NADPH oxidase 
inhibitor apocynin has a similar effect.23 Platelets from 
patients determined to be aspirin-resistant showed 
greater expression of NADPH oxidase components and 
greater NADPH oxidase activity when stimulated; the 
NADPH oxidase inhibitors apocynin and diphenylene-
iodonium (DPI) diminished the aggregatory responses 
of these platelets to collagen and epinephrine, whereas 
they had little effect on platelets from aspirin-sensitive 
patients.24

Much remains to be learnt regarding the full impact 
of NADPH oxidase activation on platelet function. Other 
physiological agonists that promote platelet aggregation—
thrombin, thromboxane, epinephrine and (adenosine 
diphosphate (ADP)—signal via G-protein mechanisms 
(as opposed to tyrosine phosphorylation); they provoke 
at most a mild activation of NAPDH oxidase.25 Nonethe-
less, some studies report that NADPH oxidase inhibition 
blunts the response of platelets to thrombin or epineph-
rine; there seems to be agreement that such inhibition 
fails to influence the proaggregatory impact of ADP.21 26 27 
How superoxide generation influences thrombin and 
epinephrine signalling remains unclear. Potentially, 
NADPH oxidase-generated superoxide could influence 
platelet function by interfering with the antiaggrega-
tory impact of nitric oxide (NO) (by scavenging NO 
or promoting uncoupling of NO synthase, as discussed 
below). Also, superoxide can interact spontaneously with 
arachidonic acid to generate F2-isoprostanes, which can 
promote platelet aggregation by serving as agonists for 

the thromboxane receptor (thereby bypassing the inhibi-
tory impact of aspirin on thromboxane synthesis).28–30

These considerations suggest that targeting Nox2-de-
pendent NADPH oxidase complexes might be a 
worthwhile strategy for stabilising platelets, particularly 
in patients with aspirin resistance.19 In that regard, the 
administration of potent doses of lipophilic statins such 
as atorvastatin or rosuvastatin can exert a platelet-stabi-
lising effect within 2 hours, and this effect may reflect 
NADPH oxidase inhibition; statins can downregulate 
NADPH oxidase activity by suppressing isoprenylation 
and membrane association of Rac1, an essential compo-
nent of Nox2-dependent NADPH oxidase.31–35

Nutraceutical strategies that target Nox2 may also 
represent a practical option for platelet stabilisation. Free 
bilirubin functions physiologically within cells to inhibit 
certain NADPH oxidase complexes, including those that 
are Nox2-dependent36–39; it therefore is not surprising 
that exposure to high physiological levels of free bili-
rubin has been reported to decrease collagen-triggered 
platelet aggregation.40 (As might be expected, bilirubin 
did not influence the aggregatory response to ADP.) This 
phenomenon may contribute to the relative protection 
from cardiovascular events enjoyed by individuals with 
high-normal plasma levels of free bilirubin, including 
people with Gilbert syndrome.41–43 Phycocyanobilin 
(PhyCB), a protein-bound chromophore in cyanobac-
teria such as spirulina, is a close chemical relative of 
bilirubin, and has been found to share bilirubin’s ability 
to inhibit NADPH oxidase complexes, likely explaining 
the profound antioxidant/anti-inflammatory effects of 
orally administered spirulina or PhyCB-enriched spir-
ulina extracts in rodent studies.44–47 Hence, adequate 
intakes of spirulina or of PhyCB-rich extracts may have 
clinical potential as a platelet-stabilising strategy. Indeed, 
exposure of platelets to phycocyanin, the spirulina 
protein, which features PhyCB as a covalently attached 
chromophore, has been reported to reduce their respon-
siveness to collagen.48 49

High-dose biotin: mimicking no
NO produced by healthy vascular endothelium has a 
platelet-stabilising effect. Moreover, platelets express the 
endothelial isoform of nitric oxide synthase (eNOS), 
which is activated by the increase in cytoplasmic free 
calcium as well as the PI3K/Akt activation associated 
with platelet aggregation; hence, the NO produced 
within stimulated platelets acts as a feedback brake on 
aggregation.50 The effect of NO in this regard is medi-
ated by direct stimulation of the soluble guanylate cyclase 
(sGC), resulting in increased synthesis of cyclic guano-
sine monophosphate (cGMP). The consequent rise in 
platelet cGMP boosts the activity of cGMP-dependent 
protein kinase I (cGKI), which then phosphorylates a 
protein (IRAG) associated with the inositol trisphos-
phate receptor in the platelet endoplasmic reticulum 
(ER), diminishing the ability of inositol trisphosphate 
to provoke release of calcium from the ER, and thereby 
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opposing aggregation.51 52 Additionally, cGKI may work 
in an additional, still poorly understood way to oppose 
ADP-mediated activation of Rap1b, the G-protein that 
enables platelet aggregation by activating the fibrino-
gen-binding activity of integrin alpha-IIb beta-3.53

Not surprisingly, agents capable of mimicking and 
potentiating NO’s activation of sGC have platelet-sta-
bilising activity.54–57 In this regard, supraphysiological 
concentrations of the vitamin biotin can directly stimu-
late sGC activity, and orally administered high-dose biotin 
exerts antihypertensive effects in rats that reflect this 
stimulation of sGC.58–60 Since biotin is well tolerated in 
daily doses as high as 300 mg, it may have clinical poten-
tial as a platelet-stabilising agent.61–63

Citrulline and high-dose folate: restoring coupling of enos
When vascular endothelium is under chronic oxidative 
stress—as it frequently is in patients at increased cardio-
vascular risk—eNOS can become ‘uncoupled’ owing to 
oxidation of its cofactor tetrahydrobiopterin (BH4) and/
or increased production of asymmetric dimethylarginine 
(ADMA); the uncoupled enzyme produces superoxide 
rather than NO.64–67 Peroxynitrite, which evolves from 
the spontaneous interaction of superoxide and NO, 
is a key mediator of BH4 oxidation.66 This uncoupling 
of eNOS might also occur in platelets, either owing to 
elevated plasma levels of ADMA or oxidation of platelet 
tetrahydrobiopterin.68–70 Oxidation of platelet BH4 may 
be common in patients with unstable angina, possibly 
reflecting repeated episodes of oxidative stress triggered 
by interaction of platelets with the coronary subendo-
thelium.70 71 The platelets of smokers and patients with 
diabetes and metabolic syndrome may also be under 
chronic oxidative stress. In these conditions, platelet 
production of NO has been reported to be subnormal 
and superoxide production elevated, likely reflecting 
eNOS uncoupling.72–76 Hyperglycaemia can boost 
mitochondrial production of superoxide in diabetic 
platelets.77 The excess exposure to free fatty acids and 
glucose typically seen in type 2 diabetes and metabolic 
syndrome may activate PKC via increased diacylglycerol 
synthesis; PKC, in turn, can stimulate NADPH oxidase 
activity.78 79 Likewise, semistable toxins in cigarette smoke 
such as acrolein can stimulate PKC, boosting oxidative 
stress.80–82 Not surprisingly, patients with diabetes, meta-
bolic syndrome or tobacco addiction are more likely to be 
classified as aspirin-resistant, and aspirin therapy appears 
to have a limited impact on risk for coronary events in 
patients with diabetes.83–93 In oxidatively stressed plate-
lets, aspirin therapy leads to an increase in isoprostane 
production that would be expected to partially offset 
the benefit stemming from inhibition of thromboxane 
synthesis.94

Administration of citrulline in multigram daily doses 
can oppose ADMA-mediated uncoupling of eNOS by 
boosting intracellular levels of arginine.95–98 High-dose 
folate promotes restoration of normal levels of tetrahy-
drobiopterin in oxidatively stressed endothelium. This 

reflects the ability of intracellular reduced folates to scav-
enge peroxynitrite-derived radicals, thereby protecting 
BH4 from oxidation; moreover, high-dose folate boosts 
endothelial expression of dihydrofolate reductase, an 
enzyme that can reduce oxidised BH4 (dihydrobiopterin) 
back to BH4.99–103 It is as yet unknown whether high-dose 
folate can induce dihydrofolate reductase in megakary-
ocytes (and hence increase its expression in platelets). 
In any case, when eNOS is uncoupled in vascular endo-
thelium and/or platelets, administration of citrulline and 
of high-dose folate may help to restore physiologically 
appropriate production of NO,104 although the direct 
impact of high-dose folate on platelets may hinge to 
some extent on its capacity to boost platelet dihydrofolate 
reductase activity. These agents would not be expected 
to influence platelet function in healthy subjects whose 
eNOS activity is properly coupled.

n-acetylcysteine: boosting glutathione levels
Like reduced folates, reduced glutathione can scavenge 
peroxynitrite-derived radicals, thereby protecting BH4 
from oxidation.105–107 Indeed, in patients with type 2 
diabetes, daily parenteral administration of glutathione 
was was found to increase the eNOS activity of their plate-
lets.108 Moreover, through interaction with glutathione 
peroxidase and glutaredoxin, glutathione can oppose the 
signalling effects of hydrogen peroxide, either by elim-
inating hydrogen peroxide or by rereducing oxidised 
cysteinyl groups.109–111 Cysteine availability is rate-lim-
iting for glutathione synthesis, and tissue glutathione 
levels can be boosted by increased cysteine intake, most 
conveniently achieved with supplemental N-acetylcys-
teine (NAC).112–115 Tissue glutathione levels tend to 
decline with ageing, reflecting inducibility of the rate-lim-
iting enzyme for glutathione synthesis, gamma-glutamyl 
synthetase; youthful levels of glutathione can be restored 
with NAC supplementation.113 116–118 Although the impact 
of NAC ingestion on platelet reactivity in vitro or ex vivo 
has received little study, NAC concentrations comparable 
to those achievable in plasma with oral administration 
have been reported to decrease oxidant stress in human 
platelets, and decrease their aggregability in response to 
thrombin and ADP; this effect is contingent on conversion 
of NAC to glutathione.119 120 The impact of supplemental 
NAC on platelet function ex vivo merits study, most 
notably in patients such as those with diabetes, whose 
platelets may be under increased oxidative stress.

Glycine: hyperpolarising platelet membranes
Glycine-gated chloride channels are expressed by various 
tissues, including platelets.121–126 High-normal plasma 
levels of glycine boost the open probability of these 
channels, and in most tissues this induces an influx of 
chloride ions, leading to hyperpolarisation of the plasma 
membrane. Notably, platelets appear to express such 
channels, and activation of this channel with glycine 
reduces the responsiveness of platelets to both collagen 
and ADP.126 Indeed, previous studies have shown that 
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plasma membrane potential can regulate platelet respon-
siveness; most such studies, although not all,127 have 
concluded that depolarised platelets are sensitised to 
aggregation provoked by collagen, thrombin, ADP and 
epinephrine—although depolarisation per se does not 
increase calcium influx or elevate intracellular levels of 
free calcium.128–131 Analogously, platelets are responsive 
to endothelium-derived hyperpolarising factor, which 
suppresses ADP-induced platelet adhesion to endo-
thelial cells.132 How membrane polarisation influences 
platelet activation remains unclear. When rats were fed 
glycine-enriched diets (2.5%–5.0%), the amplitude of 
platelet aggregation ex vivo in whole blood, in response 
to collagen or ADP, was reduced by approximately 50%.126 
Hence, dietary glycine supplementation, which has been 
found to be feasible and well tolerated, may have poten-
tial as a platelet-stabilising strategy.

Moreover, it should be noted that glycine is a substrate 
for glutathione synthesis, and supplemental glycine may 
amplify the impact of concurrent supplemental NAC on 
tissue glutathione levels.118 133

taurine: boosting hydrogen sulfide production
There are several reports that supplemental taurine can 
exert a platelet-stabilising effect in normally nourished 
humans and rats134–137; however, a null effect was seen 
in one clinical study.138 How taurine might influence 
platelet function is unclear. A recent clinical study has 
found that plasma concentrations of hydrogen sulfide 
(H2S) are markedly enhanced by taurine supplementa-
tion (1.6 g daily); concurrent rodent studies suggest that 
this phenomenon reflects increased vascular induction 
of enzymes that generate H2S.139 There is clear evidence 
that H2S has a stabilising effect on platelets; the basis of 
this effect remains unclear, and it does not appear to 
reflect an upregulation of NO bioactivity.140–144 Future 
studies assessing the impact of dietary taurine on platelet 
function should evaluate the possible contribution of H2S 
production to any platelet-modulatory effects observed.

long-chain omega-3 fats: more than thromboxane 
antagonists
Decades ago, the prolonged bleeding times and supe-
rior cardiovascular health of Eskimos following their 
traditional lifestyle motivated the first studies demon-
strating that diets high in long-chain omega-3s from fish 
oil could reduce the aggregability of platelets.145–147 This 
phenomenon was first attributed to the ability of eicos-
apentaenoic acid (EPA) to compete with arachidonic 
acid for access to COX-1, diminishing thromboxane 
synthesis.145 147 However, it was soon discovered that the 
antithrombotic impact of omega-3-rich fish is comple-
mentary to that of aspirin, implying that thromboxane 
antagonism is not the only mechanism responsible for 
the antiaggregatory impact of fish oil.148–151 Enrich-
ment of platelet membrane lipids with docosahexaenoic 
acid (DHA) has been reported to decrease the aggre-
gatory response to collagen.152–154 The clinical impact 

of DHA supplementation per se on platelet function is 
the subject of conflicting reports.155 156 How DHA might 
influence platelet function remains unclear. The impact 
of long-chain omega-3 on platelet response to collagen 
is notable—after 28 days of supplementation with 3.4 g 
EPA+DHA daily, the aggregatory response to collagen was 
inhibited by about 50%.150

summinG up
A significant proportion of patients at risk for throm-
botic episodes fail to achieve an adequate control of 
platelet aggregability when placed on aspirin therapy. 
These individuals are at greatly increased risk for cardio-
vascular events—in large part because of the metabolic 
factors that destabilise their platelets—but clinical studies 
demonstrate some ancillary measures that promote 
greater platelet stability can notably decrease their risk. 
Nutraceutical measures, because of their relative safety, 
affordability and broader protective metabolic impacts, 
may have particular merit for this purpose.

Nox2-dependent superoxide production, which plays a 
key role in collagen-triggered GPVI signalling and acts 
in other ways to promote aggregation, may be suppress-
ible with the spirulina chromophore PhyCB. Platelet 
exposure to episodic or chronic oxidative stress, associ-
ated with diabetes, metabolic syndrome, acute coronary 
syndrome and smoking, can uncouple platelet eNOS, 
diminishing the platelet-stabilising activity of NO while 
further adding to the burden of oxidative stress. Supple-
mental citrulline, high-dose folate and NAC may have 
potential for recoupling eNOS activity in platelets. High-
dose biotin should mimic the platelet-stabilising actions 
of NO by directly stimulating sGC, and supplemental 
taurine may help to stabilise platelets by boosting produc-
tion of H2S. The platelet-stabilising activity of glycine may 
reflect hyperpolarisation of platelet membrane potential, 
which downregulates platelet aggregation for unknown 
reasons. Long-chain omega-3 fatty acids, while decreasing 
platelets production of thromboxane, appear to work 
in additional ways to stabilise platelets. These measures 
can be expected to be safe and reasonably well toler-
ated. Functional foods providing at least several of the 
agents discussed here may ultimately represent a feasible 
and practical strategy for optimising platelet activity with 
nutraceuticals. Such foods moreover may contribute 
more generally to vascular and metabolic health.
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