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ABSTRACT
Objective: Recent perioperative trials have highlighted
the urgent need for a better understanding of why
sympatholytic drugs intended to reduce myocardial
injury are paradoxically associated with harm (stroke,
myocardial infarction). We hypothesised that following
a standardised autonomic challenge, a subset of
patients may demonstrate excessive sympathetic
activation which is associated with exercise-induced
ischaemia and impaired cardiac output.
Methods: Heart rate rise during unloaded pedalling
(zero workload) prior to the onset of cardiopulmonary
exercise testing (CPET) was measured in 2 observation
cohorts of elective surgical patients. The primary
outcome was exercise-evoked, ECG-defined ischaemia
(>1 mm depression; lead II) associated with an
exaggerated increase in heart rate (EHRR ≥12 bpm
based on prognostic data for all-cause cardiac death in
preceding epidemiological studies). Secondary outcomes
included cardiopulmonary performance (oxygen pulse
(surrogate for left ventricular stroke volume), peak
oxygen consumption (VO2peak), anaerobic threshold (AT))
and perioperative heart rate.
Results: EHRR was present in 40.4–42.7% in both
centres (n=232, n=586 patients). Patients with EHRR had
higher heart rates perioperatively (p<0.05). Significant ST
segment depression during CPET was more common in
EHRR patients (relative risk 1.7 (95% CI 1.3 to 2.1);
p<0.001). EHRR was associated with 11% (95%CI 7% to
15%) lower predicted oxygen pulse (p<0.0001),
consistent with impaired left ventricular function.
Conclusions: EHRR is common and associated with
ECG-defined ischaemia and impaired cardiac
performance. Perioperative sympatholysis may further
detrimentally affect cardiac output in patients with this
phenotype.

INTRODUCTION
Perioperative pharmacological interventions
aimed at attenuating sympathetic activation to

reduce myocardial ischaemia1 have met with
apparently paradoxical results. Most notably,
the largest series of randomised clinical trials—
Perioperative Ischemic Evaluation (POISE)-12

and POISE-23—found that both metoprolol
and clonidine resulted in more frequent epi-
sodes of hypotension. Sympatholysis-induced
haemodynamic instability may result in
reduced cardiac output, suboptimal organ
perfusion, and consequently may explain the
increase in stroke2 and non-fatal cardiac

KEY QUESTIONS

What is already known about this subject?
▸ POISE-1 and POISE-2 trials reported that sym-

patholytic drugs (metoprolol, clonidine) aimed at
reducing perioperative myocardial infarction
paradoxically increase the risk of hypotension
and, for metoprolol (POISE-1), death. Patients
with propensity for tachycardia are more likely
to receive such drugs, both in trials and routine
perioperative practice.

What does this study add?
▸ Using cardiopulmonary exercise testing, we

identify patients with a propensity for tachycar-
dia in whom cardiac performance is already sig-
nificantly impaired. Administering sympatholytic
drugs to these patients would be expected to
further compromise cardiac output, resulting in
hypotension and consequently further deleteri-
ous outcomes.

How might this impact on clinical practice?
▸ Identifying patients with this exaggerated tachy-

cardia phenotype will enable more personalised
perioperative monitoring and treatment in an
effort to gain the benefit of sympatholysis
(reduced myocardial injury) while mitigating
risks (hypotension).
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arrest.3 Thus, the trade-off between the therapeutic
benefit and detrimental off-target effects associated
with perioperative sympatholysis requires further
investigation.4–6 These data also suggest that identifying
patients at risk of more extreme, or persistent, sympa-
thetic activation could improve the risk-benefit ratio of
perioperative sympatholysis through a more targeted
approach.7

As a potent trigger of increased heart rate and acute
endothelial dysfunction,8 exaggerated sympathetic
outflow following minor stress may be an important—
though underappreciated—contributor to postoperative
morbidity. Excessive sympathoadrenal activation directly
causes catecholaminergic-mediated impairment of
cardiac, regulatory mechanisms that contribute to the
pathophysiology of diverse disease states.9–14 A minority
of apparently otherwise healthy individuals who exhibit
increases in heart rate as a result of the stress evoked by
the thought of vigorous exercise are at increased risk of
sudden cardiac, and all-cause, death.15

We therefore hypothesised that exaggerated heart rate
increases prior to the onset of routinely performed pre-
operative cardiopulmonary exercise testing (CPET)
would be associated with ECG evidence for ischaemia,
impaired cardiopulmonary performance and inferior
postoperative outcome.

METHODS
Patient populations
Patients were enrolled at University College London
Hospitals and Derriford Hospital, Plymouth, UK, having
obtained IRB approval (MREC: 11/H0805/58). Informed
written consent was obtained from patients undergoing
preoperative CPET as routinely requested by their clinical
teams prior to major elective surgery. Adherence to
STROBE guidelines is documented in online supplemen-
tary table S1. Inclusion criteria were any surgical patient
referred for CPET by their primary surgical and/or anaes-
thesia team. Exclusion criteria were according to
American Thoracic Society (ATS) guidelines.16

Cardiopulmonary exercise testing
Patients completed symptom-limited maximal CPET as
part of their routine preoperative assessment on a sta-
tionary cycle ergometer (Zan, nSpire, Colorado, USA;
Lode, Groningen, the Netherlands). Heart rate readings
were obtained via ECG with the patient sitting on the
cycle ergometer. Figure 1 summarises the different
stages of the CPET protocol. Patients acclimatised by
sitting on the cycle ergometer for 3 min, prior to the
start of exercise. Patients then undertook 3 min of
unloaded pedalling, prior to the initiation of ramped
exercise. Non-invasive blood pressure was measured at
the start (zero workload) and at the end of CPET. We
assessed heart rate rise as the difference between the
heart rate at rest and the heart rate measured just
before starting loaded pedalling during the exercise test
protocol (ie, after 3 min of unloaded (0 W) exercise).
We analysed these data by quartiles, and also defined
EHRR as an abnormal exaggerated heart rate
≥12 bpm,15 based on previous data showing an associ-
ation between stress-evoked increases in heart rate
before the onset of exercise and an increased risk of
sudden cardiac and all-cause cardiovascular death.15 All
EHRR data were analysed blinded to outcomes.

Assessment of exercise-evoked ischaemia
Continuous 12-lead ECG recordings were made through-
out the CPET period to enable the detection of ischae-
mia and/or development of dysrhythmias. ST-segment
depression was quantified in lead II, which is superior
for detection of atrial dysrhythmias and more easily
obtained with conventional monitors.17 Lead II ST
changes were defined as abnormal when ST depression
of 0.1 mV (1 mm) or more occurred, in accordance with
current American College of Cardiology guidelines18

and consistent with previous studies identifying that
ST-segment depression to levels ≥1 mm independently
predict future cardiac events in asymptomatic popula-
tions.19 We also assessed ST changes by heart rate adjust-
ment, which increases the diagnostic accuracy of the
exercise ECG.20 The ST–heart rate (ST/HR) index was

Figure 1 Schematic showing

different phases of CPET and

variables recorded. CPET,

cardiopulmonary exercise testing;

EHRR, exaggerated heart rate

rise.
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therefore calculated, by dividing the difference in ST
depression at peak exercise by the exercise-induced
increase in heart rate. The development at any time
during the CPET of atrial and/or ventricular dysrhyth-
mias, including ectopic beats, was also noted.

CPET performance
Anaerobic threshold (AT), which is associated with
increased postoperative morbidity and mortality,21–26 was
assessed. AT was determined by two independent asses-
sors blinded to EHRR and according to published guide-
lines using the modified V-slope method and confirmed
by ventilatory equivalents for carbon dioxide ( _VE= _VCO2)
and oxygen ( _VE= _VO2).

27 28 Peak oxygen consumption
( _VO2 peak), oxygen pulse and ( _VE= _VCO2) were also
recorded. Age, gender and weight-specific predicted
values were calculated for _VO2 peak

29 and oxygen pulse,30

a robust measure of left ventricular stroke volume.31 32

Perioperative heart rate
We interrogated serial heart rates in patients (n=54) who
had heart rate rise measured during CPET as part of
their enrolment into the Post-Operative Morbidity-
Oxygen delivery trial (POM-O) randomised controlled
trial.33 Mean heart rate over a 5 min period was com-
pared preoperatively (5 min prior to induction), intrao-
peratively (end of operation prior to cessation of
anaesthesia) and recovery (∼30 min after extubation,
prior to start of trial protocol).

Statistics
Baseline characteristics of participants were compared
according to quartile using analysis of variance (ANOVA;
quantitative variables). For continuous data, tests for skew-
ness were performed to assess normality and, where appro-
priate, the data were analysed with ANOVA.
Non-parametric data were analysed with the Kruskal-Wallis
test. The Gehan-Breslow-Wilcoxon method was used to
analyse hospital stay since this gives more weight to acceler-
ated hospital discharge at earlier time points, which is most
relevant to the hypothesis that sympathetic autonomic dys-
function increases the risk of early postoperative morbidity
and hence delayed discharge. All reported p values are two-
sided, with significance set at p≤0.05. Statistical analyses
were performed using NCSS V.8 (Kaysville, Utah, USA).

Sample size calculation
The primary outcome was ST depression ≥1 mm detected
during CPET. Using the VISION study definition of myo-
cardial injury after non-cardiac surgery as a guide,1 which
reported a myocardial infarction rate of ∼8% patients
undergoing non-cardiac surgery, we estimated that signifi-
cant ST depression would occur in twice as many patients
with EHRR. Having established a prevalence of EHRR
∼34% in the Plymouth cohort before analysing ST
changes, we catered for a 10% drop-out rate (failure to
complete CPET, difficulty in determining AT and poor

quality ECG data) by aiming to recruit 895 patients under-
going CPET (α of 0.05; power of 80%).

RESULTS
Eight hundred and eighteen patients were recruited
across both centres. Changes in heart rate while patients
acclimatised to the exercise bike conditions at zero work-
load (unloaded cycling) were similar between centres
(table 1; figure 2).
Upper tertile values were similar to previous data

showing that an abnormal EHRR ≥12 bpm was asso-
ciated with an increased risk of sudden cardiac and all-
cause cardiovascular death.15 We therefore explored this
upper tertile cut-off value in subsequent analyses. In the
UCLH cohort, 237/586 (40.4%) demonstrated EHRR
≥12 bpm (table 2). Cardiovascular drug therapy and
co-morbidities were similar between patients with, or
without, EHRR (see online supplementary tables S2 and
S3). We did not find any relationship between
EHRR≥12 bpm and the Revised Cardiac Risk Index
(relative risk of RCRI≥2: 1.00 (95% CI 0.77 to 1.29);
p=0.98). We observed similar results in a second
(Plymouth) cohort, where 99/232 (42.7%) patients had
EHRR (table 2).
We found that baseline and peak heart rates during

exercise were not associated with EHRR (table 3).
Consistent with this hyper-adrenergic pre-exercise
phenotype, both systolic and diastolic blood pressure
(measured before CPET) were higher in patients with
EHRR (table 4). Although peak systolic blood pressure
during exercise was similar between groups, the increase

Table 1 Distribution of heart rate changes while patients

acclimatised to the exercise bike conditions at zero

workload (unloaded cycling)

Heart rate rise preloaded

exercise (95% CI) UCLH Plymouth

Median 9 (9 to 10) 10 (9 to 11)

25th centile 5 (4 to 6) 5 (4 to 6)

75th centile 16 (15 to 17) 17 (15 to 19)

Data are shown as median (95% CIs).

Figure 2 Distribution of changes in heart rate prior to loaded

exercise.
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in systolic pressure from baseline was lower in patients
with EHRR (table 4).

Exercise-evoked ischaemia
In both centres, similar proportions of patients (27.3–
40.4%) demonstrated ST-segment depression ≥1 mm
during CPET. Continuous ECG recordings revealed an
association between EHRR and ST-segment depression
≥1 mm in both cohorts (table 5). Across both centres,
EHRR was associated with an increased relative risk of
developing significant ST depression (relative risk: 1.7
(95% CI 1.3 to 2.1); p<0.001). Adjusting for changes in
heart rate during exercise using the ST–heart rate (ST/
HR) index, we again observed greater ST depression in
EHRR patients (table 5). EHRR was not associated with
exercise-evoked atrial and/or ventricular dysrhythmias
(data not shown).

Preoperative cardiopulmonary performance
Given we found an association between EHRR and ECG
changes compatible with coronary artery dysfunction, we
predicted that this occult sympathetic autonomic dys-
function phenotype should also be associated with
impaired cardiopulmonary reserve. In addition to lower
_VO2 peak, we found that oxygen pulse—a robust surrogate
for left ventricular function- was >10% lower in patients
with EHRR (table 6). Left ventricular performance was
more likely to fail to meet age-,weight and gender

predicted norms in patients with EHRR (relative risk
1.26 (95% CI 1.14 to 1.39); p<0.001).

Perioperative data
Patients with preoperative EHRR (n=22/54) had higher
heart rates throughout the perioperative period
(p=0.017; figure 3A). Outcomes data from the Plymouth
and UCLH cohorts showed that EHRR was associated
with longer hospital stay following major surgery (n=566;
p=0.03, by Gehan-Breslow-Wilcoxon survival analysis;
figure 3B).

DISCUSSION
These data demonstrate from two separate cohorts of
surgical patients that the sympathetic autonomic
response elicited during unloaded pedaling prior to
ramped exercise (EHRR) is associated with increased
risk of ECG-defined ischaemia, inferior cardiac perform-
ance and prolonged hospital stay. There is compelling
physiological evidence to show that EHRR is chiefly due
to mental stress. Similar rises in heart rate occur in
patients sitting on a bike before exercise, but not pedal-
ling, which are not accounted for by changes in
posture.15 These data strongly suggest that EHRR is not
due to pedalling-induced increased oxygen consump-
tion, but rather to sympathetic activation due to stress.
Our data add support to this assertion, since low aerobic
capacity was evident regardless of presence/absence of

Table 2 Demographics for both cohorts, stratified by heart rate change during unloaded cycling (zero workload) of patients

acclimatised to the exercise bike conditions

UCLH Plymouth

Normal EHRR Normal EHRR

Number (%) 349 (59.6) 237 (40.4) 133 (57.3) 99 (42.7)

Age (years) 61 (60 to 63) 65 (63 to 66) 65 (63 to 68) 67 (65 to 70)

Gender (male; %) 249 (71.3) 99 (41.8) 87 (65.4) 44 (45.8)

BMI (kg/m2) 27.0 (26.4 to 27.5) 28.5 (27.5 to 29.4) 27.5 (26.7 to 28.2) 29.1 (28.2 to 30.0)

Malignancy (n; %) 120 (45.6) 89 (50.9) 103 (77.4) 72 (75)

Data are shown as median (95% CIs).
Data analysed by one-way ANOVA or Fisher’s exact test.
ANOVA, analysis of variance; BMI, body mass index; EHRR, exaggerated heart rate rise. University College London Hospitals NHS Trust.

Table 3 CPET heart rate data, stratified by heart rate change during unloaded cycling (zero workload) of patients

acclimatised to the exercise bike conditions

Normal EHRR p Value

Pre-exercise

Resting heart rate (per min) 82 (81 to 84) 82 (80 to 83) 0.75

Zero workload heart rate (per min) 88 (86 to 89) 104 (101 to 106) <0.001

Heart rate change, zero workload (per min) 5 (5 to 6) 22 (20 to 23) <0.001

Exercise

Peak heart rate during CPET (per min) 134 (132 to 137) 135 (132 to 139) 0.56

Heart rate change, from baseline (per min) 51 (48 to 54) 53 (50 to 56) 0.60

Data are shown as mean (95% CIs).
Data analysed by one-way ANOVA.
ANOVA, analysis of variance; CPET, cardiopulmonary exercise testing; EHRR, exaggerated heart rate rise.
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EHRR. Many patients express anxiety at the time of
CPET, presumably because of uncertainty about their
ability to undergo an unfamiliar acute, vigorous physical
challenge. This observation is further supported by
higher resting blood pressure in patients with EHRR,
even though a diagnosis of hypertension was similarly
prevalent across the groups. Several studies using a dif-
ferent experimental paradigm have also identified that
mental stress alone can trigger silent myocardial ischae-
mia.10–14 It is conceivable—and worthy of future investi-
gation—that mental stressors such as task-oriented tests
could similarly identify preoperative patients at the great-
est risk of excessive sympathetic activity.
Previous studies have demonstrated that ST-segment

depression to levels ≥1 mm independently predict
future cardiac events in asymptomatic populations.19 We
did not explore early heart rate changes during exercise,
which have also been associated with excess cardiovascu-
lar risk. As a potent trigger of increased heart rate and
acute endothelial dysfunction,8 exaggerated sympathetic
outflow following minor, including mental, stress may be

an important—though underappreciated—contribution
to several morbidities observed commonly in the peri-
operative setting. Mental stress triggers myocardial
ischaemia in patients with coronary artery disease,
through pathological vasoconstriction following acetyl-
choline infusion.10–14 A minority of apparently otherwise
healthy individuals who exhibit increases in heart rate as
a result of the mental stress evoked by the thought of
vigorous exercise are at increased risk of sudden cardiac
death.15 In addition to well-documented consequences
on myocardial ischaemia, it is increasingly recognised
that excessive sympathetic activation can cause extracar-
diac cellular injury.9 High levels of endogenous catecho-
lamines are likely to alter perioperative haemodynamic
management, particularly in the absence of flow-guided
monitoring.34 Hepatic dysfunction,35 acute lung injury36

and promotion of bacterial overgrowth37 provide direct
and/or indirect mechanisms through which sympathetic
activation can adversely influence postoperative
outcomes. Persistently elevated plasma catecholamine
levels also predispose to infection,38 through

Table 5 ST-segment changes in both cohorts

Normal EHRR p Value

ST change (mm) −0.50 (−0.85 to −0.14) −0.95 (−1.09 to −0.81) <0.0001

ST/HR index (mm/min) −0.01 (−0.02 to −0.01) −0.02 (−0.03 to −0.02) <0.0001

Data are shown as mean (95% CIs) for both cohorts.
Data analysed by one-way ANOVA.
ANOVA, analysis of variance; EHRR, exaggerated heart rate rise.

Table 6 Cardiopulmonary exercise testing data

Normal EHRR p Value

Anaerobic threshold (mL/kg/min) 11.1 (10.8 to 11.4) 10.6 (10.2 to 11.1) 0.008
_VO2 peak (% predicted) 78 (75 to 81) 74 (71 to 77) 0.05

( _VE= _VCO2 ) 30.1 (29.6 to 30.7) 30.2 (29.5 to 30.9) 0.86

Oxygen pulse (% predicted) 95 (93 to 98) 85 (82 to 88) 0.0001

Data are shown as mean (95% CIs) for both cohorts.
Data analysed by one-way ANOVA.
ANOVA, analysis of variance; EHRR, exaggerated heart rate rise; ( _VE= _VCO2 ), ventilatory equivalents for carbon dioxide; _VO2 peak, peak oxygen
consumption.

Table 4 Exercise-evoked changes in blood pressure

Normal EHRR p Value

Baseline

Systolic blood pressure (mm Hg) 144 (142 to 147) 157 (153 to 161) <0.001

Diastolic blood pressure (mm Hg) 82 (81 to 84) 85 (83 to 87) 0.02

Exercise

Peak systolic blood pressure (mm Hg) 189 (186 to 193) 192 (188 to 196) 0.22

Peak diastolic blood pressure (mm Hg) 89 (86 to 92) 95 (88 to 102) 0.11

Increase from baseline (systolic; mm Hg) 45 (42 to 48) 34 (31 to 37) <0.001

Cohort from University College London Hospital: data are shown as mean (95% CIs).
Data analysed by one-way ANOVA.
ANOVA, analysis of variance; EHRR, exaggerated heart rate rise.
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dysregulation of adhesion molecules,39 apoptosis40 and
β-adrenoreceptor-mediated redistribution of lympho-
cytes from peripheral blood to lymphatic tissue.41

Consistent with these translational insights, intraopera-
tive tachycardia and hypertension have been associated
with postoperative morbidity and prolonged hospital stay
after major non-cardiac surgery.42

Strengths of these data are that all analyses were per-
formed blinded to primary and secondary outcomes, in
two separate centres. Describing this dysautonomic par-
ameter in the context of a highly phenotyped cardiovas-
cular test enables correlation with comprehensive
cardiopulmonary physiological data. Established bio-
logical plausibility for this phenomenon and preceding
similar findings, albeit with different testing method-
ology in non-operative patients, lends important
support. Interindividual genetic variation in adrenergic
receptor and signalling may influence these responses.43

The observational nature and lack of an intervention
limit more robust conclusions.
There are several clinical implications raised by these

data. A clearer understanding is required of which
patients may benefit from perioperative sympatholysis.
Identifying highly phenotyped patients at the highest
perioperative risk of excess sympathetic activation could
provide a new rationale for targeted sympatholysis, rather
than a ‘one-size-fits-all’ approach which does not appear
to have an acceptable therapeutic risk-benefit ratio.2 3

Our data are consistent with recent experimental rodent
data identifying off-target risks of β-blockade following
perioperative anaemia.44 The subpopulation of patients
we have identified who exhibit high sympathetic activity
to stress, frequently driven by perioperative factors includ-
ing acute blood loss and/or hypovolaemia, may have an
increased risk for vital organ hypoxia and injury if sym-
patholysis was implemented given their established
cardiac dysfunction. Certainly, sympatholysis in these

patients could play an important role in perioperative
stroke, particularly given the importance of avoiding
hypotension.45 Taken together, these studies suggest that
in addition to the need for further trials,46 a mechanistic
re-evaluation of the appropriate clinical indications and
timing for perioperative sympatholysis is necessary to
mitigate the detrimental effects of β-blockade and α-2
agonism identified by serial POISE trials.
In summary, we have identified a significant number of

patients who exhibit cardiovascular changes associated
with excess sympathoadrenal activity in the preoperative
setting. These patients develop exercise-induced,
ECG-defined ischaemia and sustain prolonged hospital
stay. This subset of patients may benefit from interven-
tions designed to counteract the multiorgan, deleterious
impact of excessive sympathetic activity and/or inappro-
priately targeted sympatholysis on cellular function.
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